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Quantum Computing Basics: Qubits and Quantum Gates 
 

Basis set of a two-dimensional vector space 

|0⟩ = %10' ;	|1
⟩ = %01' (1) 

Qubit = complex vector 

|𝜓(𝜃, 𝜙)⟩ = cos 3!
"
4 |0⟩ + sin 3!

"
4 𝑒#$|1⟩; 	𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0,2𝜋] (2) 

 
Fig. 1: Bloch sphere representation of a qubit. 

(Example) Note 𝑒#$ = cos(𝜙) + 𝑖sin(𝜙) 
Classical bits: |𝜓(0,0)⟩ = |0⟩; |𝜓(𝜋, 0)⟩ = |1⟩ 

Superposed states:?𝜓(%
"
, 0)@ = &

√"
(|0⟩ + |1⟩); ?𝜓(%

"
, 𝜋)@ = &

√"
(|0⟩ − |1⟩) 

Quantum gate = matrix 
Pauli X (NOT) gate    Spin flip 

𝑋 = %0 1
1 0', (3) 

thus 

𝑋|0⟩ = %0 1
1 0' %

1
0' = %01' = |1⟩; 𝑋|1⟩ = %0 1

1 0' %
0
1' = %10' = |0⟩. (4) 

Hadamard (H) gate    Important for generating superposition states for quantum parallelism 

𝐻 = &
√"
%1 1
1 −1' (5) 

thus 

𝐻|0⟩ = &
√"
%1 1
1 −1' %

1
0' =

&
√"
%11'; 𝐻|1

⟩ = &
√"
%1 1
1 −1' %

0
1' =

&
√"
% 1−1'. (6) 
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Two-qubit state = tensor product 

|𝑥⟩⨂|𝑦⟩ = |𝑥⟩|𝑦⟩ = |𝑥𝑦⟩ =  
(𝑥 = 𝑎|0⟩ + 𝑏|1⟩)(𝑦 = 𝑐|0⟩ + 𝑑|1⟩) = 𝑎𝑐|00⟩ + 𝑎𝑑|01⟩ + 𝑏𝑐|10⟩ + 𝑏𝑑|11⟩. (7) 
Flat vector representation of tensor product uses the following basis set 

K
1
0
0
0

L = |00⟩;	K
0
1
0
0

L = |01⟩;	K
0
0
1
0

L = |10⟩;	K
0
0
0
1

L = |11⟩ (8) 

and thus 

%𝑎𝑏'
|0⟩
|1⟩⨂ %𝑐𝑑'

|0⟩
|1⟩ = K

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑
L

|00 = 0⟩
|01 = 1⟩
|10 = 2⟩
|11 = 3⟩

. (9) 

Both binary and decimal indices are shown for the flat vector representation of the tensor-product state in Eq. (9). 

Two-qubit gate: Controlled NOT (CNOT or controlled X)    Essential for computation 
                                                                                                                             Truth table 

|𝑥⟩|𝑦⟩
()*+
N⎯⎯P CNOTU |𝑥⟩V

,-./0-1	3456/

	 𝑦⟩⏞
/7089/	3456/

X= |𝑥⟩|𝑥 ⊕ 𝑦⟩ ,  (10) 

where ⊕ is the logical exclusive OR operator (defined by the truth table, in which ¬ is the logical 
negation operator), or more specifically 

CNOT(|00⟩)= |00⟩; 	CNOT(|01⟩)= |01⟩; 	CNOT(|10⟩)= |11⟩; 	CNOT(|11⟩)= |10⟩;	 (11) 

Matrix notation of CNOT 

𝑈()*+ =

00 01 10 11

K
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

L
00
01
10
11

= %𝐼 0
0 𝑋', (12) 

where I is the 2×2 identity matrix. The last notation represents the 4 × 4 matrix as 2×2 blocks, 
with each block being a 2×2 matrix. 

 
Fig. 2: Operation of CNOT gate. 

In Eq. (12), the most|least significant bit in a binary matrix row or column index (i.e., 00, 01, 10, 11) specifies 
inter|intra-block index for the first|second qubit. 
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Circuit example (try it at https://quantum-computing.ibm.com using Composer) 

This circuit generates a correlated 2-qubit state, (|00⟩ + |11⟩)/√2, called Bell state. 

 

 
Fig. 3: Hadamard and CNOT gates example. 

 
Fig. 4: Hadamard and CNOT gates example using IBM Q Composer. 

Q-sphere (it’s not the 1-qubit Bloch sphere) visually represents a state of 𝑛	(≤ 5) qubits. The north|south pole signifies 
the state where all qubits are 0|1 (e.g., |000⟩||111⟩), and the latitude is the Hamming distance from the all-zero state 
(i.e., how many qubits are not zero). 
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Tensor product of one-qubit quantum gates (matrices) 
Consider quantum gates A and B independently operating on the first and second qubits: 

𝐴 = %
𝑎&& 𝑎&"
𝑎"& 𝑎""' ; 𝐵 = c𝑏&& 𝑏&"

𝑏"& 𝑏""
d  

⟹ 𝐴⨂𝐵 = c𝑎&&𝐵 𝑎&"𝐵
𝑎"&𝐵 𝑎""𝐵

d = f

𝑎&&𝑏&& 𝑎&&𝑏&"
𝑎&&𝑏"& 𝑎&&𝑏""

𝑎&"𝑏&& 𝑎&"𝑏&"
𝑎&"𝑏"& 𝑎&"𝑏""

𝑎"&𝑏&& 𝑎"&𝑏&"
𝑎"&𝑏"& 𝑎"&𝑏""

𝑎""𝑏&& 𝑎""𝑏&"
𝑎""𝑏"& 𝑎""𝑏""

g. (13) 

See Appendix for detailed explanation of Eq. (13). 

(Example: quantum parallelism) 𝐻⨂𝐻 where 𝐻 = &
√"
%1 1
1 −1' 

𝐻⨂𝐻 = &
√"
%𝐻 𝐻
𝐻 −𝐻' =

&
"
K
1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

L (14) 

This circuit transforms a pure state to a superposition of all possible states, which is a way to 
achieve quantum parallelism, e.g., 𝐻⨂𝐻|00⟩ = &

"
(|00⟩ + |01⟩ + |10⟩ + |11⟩). 

 

 

⟹ 
 

⟹ 

 
Fig. 5: An example tensor product of quantum operators. 

(Application for quantum circuit reduction) 

Λ = &
"
%𝐻 𝐻
𝐻 −𝐻' %

𝐼 0
0 𝑋' %

𝐻 𝐻
𝐻 −𝐻' =

&
"
%𝐻 𝐻𝑋
𝐻 −𝐻𝑋' %

𝐻 𝐻
𝐻 −𝐻' =

&
"
%𝐼 + 𝐻𝑋𝐻 𝐼 − 𝐻𝑋𝐻
𝐼 − 𝐻𝑋𝐻 𝐼 + 𝐻𝑋𝐻' (15) 

 
Fig. 6: Quantum circuit Λ in Eq. (15). 

Here, we have used the identity, 

𝐻" = &
√"
%1 1
1 −1'

&
√"
%1 1
1 −1' =

&
"
%2 0
0 2' = %1 0

0 1' = 𝐼, (16) 

i.e., H is a symmetric orthogonal matrix (𝐻 = 𝐻: and 𝐻:𝐻 = 𝐻𝐻: = 𝐼). 
In Eq. (15), 

𝐻𝑋𝐻 = &
"
%1 1
1 −1' %

0 1
1 0' %

1 1
1 −1' =

&
"
% 1 1
−1 1' %

1 1
1 −1' =

&
"
%2 0
0 −2' = %1 0

0 −1' = 𝑍, (17) 
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where Z denotes Pauli Z gate. 
Substituting Eq. (17) to (15), we obtain 

Λ = &
"
%𝐻 𝐻
𝐻 −𝐻' %

𝐼 0
0 𝑋' %

𝐻 𝐻
𝐻 −𝐻' =

&
"
%𝐼 + 𝑍 𝐼 − 𝑍
𝐼 − 𝑍 𝐼 + 𝑍' =

00 01 10 11

K
1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

L
00
01
10
11

, (18) 

where we have used the relation 

&
"
(𝐼 ± 𝑍) = &

"
%1 ± 1 0
0 1 ∓ 1' = l

%1 0
0 0'

%0 0
0 1'

. (19) 

Equation (18) states that 

Λ|00⟩ = |00⟩; 	Λ|10⟩ = |10⟩; 	Λ|01⟩ = |11⟩; 	Λ|11⟩ = |01⟩ (20) 

or 

Λ(𝑥, 𝑦) = 𝑥 ⊕ 𝑦, 𝑦 (21) 

which is CNOT gate, where the second qubit acts as the conditional qubit. Graphically, thus 

 
Fig. 7: Quantum-circuit equivalence. 

Measurement gate 

Measurement operator M projects a qubit |𝜓⟩ to the Z basis, i.e., eigenvectors |0⟩ and |1⟩ with 
corresponding eigenvalues 1 and −1. 

𝑀|𝜓⟩ = |𝑧⟩⟨𝑧|𝜓⟩ = 𝜓(𝑧)|𝑧⟩ (22) 

Each measurement gate irreversibly returns the measured value, 𝑧 = 0	or	1, with the probability* 
⟨𝜓|𝑀|𝜓⟩ = ⟨𝜓|𝑧⟩⟨𝑧|𝜓⟩ = |𝜓(𝑧)|" = 𝑃(𝑧). (23) 

* We need to run each circuit many times to obtain the probability. 
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Measurement example (try it at https://quantum-computing.ibm.com using Composer) 

Consider a two-qubit circuit, where both qubits (named q0 and q1) are initialized to |0⟩ by default. 
This is simply the equivalent circuit in Fig. 7, after q1 was flipped to |1⟩. The CNOT gate 
conditional to q1 then flips q1 to |1⟩. The measurements thus show both qubits are 100% in |1⟩, as 
Λ|01⟩ = |11⟩ shown in Eq. (20). 

     
Fig. 8: (Left) Operation of the equivalent quantum circuit in Fig. 7 to qubits.  (Right) Resulting probability distribution 
produced by IBM Q Composer. 

                     
Fig. 9: Symbols for Pauli X (NOT), Pauli Z, Hadamard (H), conditional not (CNOT) and measurement gates used in 
IBM Q Composer. 

OpenQASM and Qiskit programs (see the code panel in Composer) 

OPENQASM 2.0; 
include "qelib1.inc"; 
 
qreg q[2]; 
creg c[2]; 
 
h q[0]; 
x q[1]; 
h q[1]; 
cx q[0],q[1]; 
h q[0]; 
h q[1]; 
measure q[0] -> c[0]; 
measure q[1] -> c[1]; 

from qiskit import QuantumRegister, 
ClassicalRegister, QuantumCircuit 
from numpy import pi 
 
qreg_q = QuantumRegister(2, 'q') 
creg_c = ClassicalRegister(2, 'c') 
circuit = QuantumCircuit(qreg_q, creg_c) 
 
circuit.h(qreg_q[0]) 
circuit.x(qreg_q[1]) 
circuit.h(qreg_q[1]) 
circuit.cx(qreg_q[0], qreg_q[1]) 
circuit.h(qreg_q[0]) 
circuit.h(qreg_q[1]) 
circuit.measure(qreg_q[0], creg_c[0]) 
circuit.measure(qreg_q[1], creg_c[1]) 

OpenQASM Qiskit 

Table I: OpenQASM and Qiskit programs for the quantum circuit in Fig. 8. 

In Qiskit programming language, h() and x() are the one-qubit Hadamard and Pauli X (NOT) operators acting on the 
specified qubit, cx() is the two-qubit CNOT gate acting on the specified two qubits, and measure() measures the state 
of the specified qubit (first argument) and stores the measured value (∈ {0,1}) to the specified classical bit (second 
argument). QuantumRegister|ClassicalRegister() creates a quantum|classical register with the specified number of bits 
and optional label. QuantumCircuit() creates a quantum circuit consisting of those registers. 
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Appendix: Tensor Product of Quantum Gates 

Let the states of two qubits be 
|𝑥⟩ = %

𝑥&
𝑥"' ; 	|𝑦

⟩ = %
𝑦&
𝑦"' (A1) 

and one-qubit gates acting on respective qubits be 

𝐴 = %
𝑎&& 𝑎&"
𝑎"& 𝑎""' ; 	𝐵 = c𝑏&& 𝑏&"

𝑏"& 𝑏""
d. (A2) 

Tensor product of the input two-qubit state is 

|𝑥⟩⨂|𝑦⟩ = K

𝑥&𝑦&
𝑥&𝑦"
𝑥"𝑦&
𝑥"𝑦"

L = %
𝑥&𝐲
𝑥"𝐲', (A3) 

where boldface font was used to indicate a two-element column vector nested inside a vector. 
Similarly, tensor product of the output two-qubit state, after operation of both one-qubit gates on 
respective qubits, is 

𝐴|𝑥⟩⨂𝐵|𝑦⟩ = c
(𝐀𝐱)&𝐁𝐲
(𝐀𝐱)"𝐁𝐲

d = c(𝑎&&𝑥& + 𝑎&"𝑥")𝐁𝐲(𝑎"&𝑥& + 𝑎""𝑥")𝐁𝐲
d = c𝑎&&𝐁 𝑎&"𝐁

𝑎"&𝐁 𝑎""𝐁
d %
𝑥&𝐲
𝑥"𝐲', (A4) 

where we have used boldface font to indicate a 2×2 matrix nested inside a vector or matrix and 
(𝐀𝐱)& denotes the first element of the 𝐀𝐱 vector. Equation (A4) demonstrates the nested nature of 
one-qubit gates operating separably on two qubits. Namely, operators on the first and second qubits 
act on inter- and intra-2×2 blocks within 4×4 matrix. 
 


