Advanced: Quantum Dynamics Simulation

We will perform quantum dynamics ($\mathrm{QD)}$ simulation on a quantum computer for the transverse-field Ising model (TFIM) Hamiltonian for two spins,
$H=-J \sigma_{0}^{Z} \sigma_{1}^{z}-B \sum_{j=0}^{1} \sigma_{j}^{x}$,
where σ_{j}^{Z} and σ_{j}^{x} are Pauli Z and X matrices acting on the j-th spin, J is the exchange coupling, and B is the magnetic field along the x axis.

Time evolution of a two-spin wave function, $|\Psi(t)\rangle=\left|\psi_{0}(t)\right\rangle\left|\psi_{1}(t)\right\rangle\left(\left|\psi_{j}(t)\right\rangle\right.$ is the wave function of the j-th spin at time t), for small time step Δt is governed by (cf. https://aiichironakano.github.io/phys516/03QD.pdf)
$|\Psi(t+\Delta t)\rangle=\exp (-i H \Delta t)|\Psi(t)\rangle$
in the atomic unit. Using Trotter expansion, the time-propagation operator is approximated as
$\exp (-i H \Delta t)=\exp \left(i \Delta t J \sigma_{0}^{z} \sigma_{1}^{z}\right) \exp \left(i \Delta t B \sigma_{0}^{x}\right) \exp \left(i \Delta t B \sigma_{1}^{x}\right)+O\left(\Delta t^{2}\right)$.
Let us first consider the transverse-field propagator $\exp \left(i \Delta t B \sigma_{j}^{x}\right)$ acting on the j-th spin independent of the other spin. We use the eigendecomposition (see Appendix) of Pauli X matrix,
$\sigma^{x}=X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Note that
$\sigma^{x} H=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=H \sigma^{z}$,
where H is the Hadamard gate (which is column-aligned eigenvectors $(1 / \sqrt{2}, \pm 1 / \sqrt{2})^{T}$ of σ^{x} with respective eigenvalues ± 1), or equivalently
$\sigma^{x}=H \sigma^{z} H$,
where we have used the fact H is a symmetric orthogonal matrix, i.e., $H^{-1}=H^{T}=H$ and thus
$H^{2}=I$
(I is the identity matrix).
Using Taylor expansion of the time propagator and Eqs. (6) and (7) (the procedure is called telescoping),
$\exp \left(i \Delta t B \sigma^{x}\right)=\sum_{n=0}^{\infty} \frac{(i \Delta t B)^{n}}{n!} \sigma^{x^{n}}=\sum_{n=0}^{\infty} \frac{(i \Delta t B)^{n}}{n!}\left(H \sigma^{z} H\right)^{n}=$
$\sum_{n=0}^{\infty} \frac{(i \Delta t B)^{n}}{n!} \overbrace{H \sigma^{z} H H \sigma^{z} H \cdots H \sigma^{z} H}^{n \text { times }}$ (every internal HH product becomes I) $=$
$H \sum_{n=0}^{\infty} \frac{(i \Delta t B)^{n}}{n!} \sigma^{z^{n}} H=H \sum_{n=0}^{\infty} \frac{(i \Delta t B)^{n}}{n!}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)^{n} H=H\left(\begin{array}{cc}\sum_{n=0}^{\infty} \frac{(i \Delta t B)^{n}}{n!} & 0 \\ 0 & \sum_{n=0}^{\infty} \frac{(-i \Delta t B)^{n}}{n!}\end{array}\right) H=$
$H\left(\begin{array}{cc}e^{i \Delta t B} & 0 \\ 0 & e^{-i \Delta t B}\end{array}\right) H=H R_{z}(-2 \Delta t B) H=\frac{1}{2}\left(\begin{array}{ll}e^{i \Delta t B}+e^{-i \Delta t B} & e^{i \Delta t B}-e^{-i \Delta t B} \\ e^{i \Delta t B}-e^{-i \Delta t B} & e^{i \Delta t B}+e^{-i \Delta t B}\end{array}\right)=$
$\left(\begin{array}{ll}\cos (\Delta t B) & i \sin (\Delta t B) \\ i \sin (\Delta t B) & \cos (\Delta t B)\end{array}\right)=R_{x}(-2 \Delta t B)$.

In terms of the native gates on IBM Q computers, Eq. (8) can be implemented using either rotation around the z axis, $R_{z}(\theta)$, along with Hadamard gate H, or solely using rotation around the x axis, $R_{x}(\theta)$. Here, R_{z} and R_{x} gates are defined as
$R_{z}(\theta)=\left(\begin{array}{cc}e^{-i \theta / 2} & 0 \\ 0 & e^{i \theta / 2}\end{array}\right)$,
$R_{x}(\theta)=\left(\begin{array}{cc}\cos (\theta / 2) & -i \sin (\theta / 2) \\ -i \sin (\theta / 2) & \cos (\theta / 2)\end{array}\right)$.
(see https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/circuits/3 summary of quantum operations.ipynb).
Next, we consider the exchange-coupling propagator $\exp \left(i \Delta t J \sigma_{0}^{Z} \sigma_{1}^{Z}\right)$. We first consider a tensor product of operators multiplied by a scalar constant,
$i \Delta t J \sigma_{0}^{Z} \otimes \sigma_{1}^{Z}=i \Delta t J\left(\begin{array}{cc}1 \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) & 0 \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \\ 0 \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) & -1 \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\end{array}\right)=\left(\begin{array}{ccc}i \Delta t J & 0 & 0 \\ 0 & -i \Delta t J & 0 \\ 0 \\ 0 & 0 & -i \Delta t J \\ 0 & 0 & 0\end{array}\right)$.
Since this is a diagonal matrix, it can be exponentiated element by element as
$\exp \left(i \Delta t J \sigma_{0}^{z} \sigma_{1}^{z}\right)=\left(\begin{array}{ccccc}\exp (i \Delta t J) & & 0 & 0 & 0 \\ 0 & & \exp (-i \Delta t J) & 0 & 0 \\ & 0 & 0 & \exp (-i \Delta t J) & 0 \\ & 0 & 0 & 0 & \exp (i \Delta t J)\end{array}\right)=$
$\left(\begin{array}{cc}R_{z}(-2 \Delta t J) & 0 \\ 0 & R_{z}(2 \Delta t J)\end{array}\right)$.
Now consider the following sequence of quantum gates operating on two qubits, q_{0} and q_{1},
$G=C X\left(q_{0}, q_{1}\right) \cdot R_{1}^{Z}(-2 \Delta t J) \cdot C X\left(q_{0}, q_{1}\right)$,
where
$C X\left(q_{0}, q_{1}\right)=\left(\begin{array}{ll}I & 0 \\ 0 & X\end{array}\right)$
is the controlled X (CNOT) gate, with q_{0} and q_{1} being the control and target bits, and R_{1}^{z} is the R^{z} gate acting on q_{1}. When operating on two qubits, R_{1}^{z} signifies a tensor product,
$I \otimes R^{z}(-2 \Delta t J)=\left(\begin{array}{cc}1 \cdot R^{z}(-2 \Delta t J) & 0 \cdot R^{z}(-2 \Delta t J) \\ 0 \cdot R^{z}(-2 \Delta t J) & 1 \cdot R^{z}(-2 \Delta t J)\end{array}\right)=\left(\begin{array}{cc}R^{z}(-2 \Delta t J) & 0 \\ 0 & R^{z}(-2 \Delta t J)\end{array}\right)$.
Substituting Eqs. (14) and (15) in Eq. (13), we obtain
$G=\left(\begin{array}{ll}I & 0 \\ 0 & X\end{array}\right)\left(\begin{array}{cc}R^{z}(-2 \Delta t J) & 0 \\ 0 & R^{z}(-2 \Delta t J)\end{array}\right)\left(\begin{array}{ll}I & 0 \\ 0 & X\end{array}\right)=\left(\begin{array}{cc}R^{z}(-2 \Delta t J) & 0 \\ 0 & X R^{z}(-2 \Delta t J) X\end{array}\right)$.
Here,
$X R^{z}(-2 \Delta t J) X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}\exp (i \Delta t J) & 0 \\ 0 & \exp (-i \Delta t J)\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=$
$\left(\begin{array}{cc}0 & \exp (-i \Delta t J) \\ \exp (i \Delta t J) & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}\exp (-i \Delta t J) & 0 \\ 0 & \exp (i \Delta t J)\end{array}\right)=R^{z}(2 \Delta t J)$.

Substituting Eq. (17) in Eq. (16) and compare the result with Eq. (12), we arrive at the identity, $G=C X\left(q_{0}, q_{1}\right) R_{1}^{z}(-2 \Delta t J) C X\left(q_{0}, q_{1}\right)=\left(\begin{array}{cc}R^{z}(-2 \Delta t J) & 0 \\ 0 & R^{z}(2 \Delta t J)\end{array}\right)=\exp \left(i \Delta t J \sigma_{0}^{z} \sigma_{1}^{z}\right)$.
where the last equality results from Eq. (12). Namely, $G=C X\left(q_{0}, q_{1}\right) \cdot R_{1}^{z}(-2 \Delta t J) \cdot C X\left(q_{0}, q_{1}\right)$ is a quantum-gate implementation of the exchange-coupling propagator $\exp \left(i \Delta t J \sigma_{0}^{Z} \sigma_{1}^{Z}\right)$.

Combining Eqs. (8) and (18) for the transverse-field and exchange-coupling time propagators, respectively, quantum-circuit implementation for a single time step of time evolution for the TFIM model, Eq. (1), is given by

$$
\begin{align*}
& \exp (-i H \Delta t)=\exp \left(i \Delta t J \sigma_{0}^{Z} \sigma_{1}^{Z}\right) \exp \left(i \Delta t B \sigma_{0}^{x}\right) \exp \left(i \Delta t B \sigma_{1}^{x}\right)= \\
& C X\left(q_{0}, q_{1}\right) R_{1}^{Z}(-2 \Delta t J) C X\left(q_{0}, q_{1}\right) R_{0}^{x}(-2 \Delta t B) R_{1}^{x}(-2 \Delta t B) \tag{18}
\end{align*}
$$

Fig. 1: Quantum circuit for time evolution of TFIM in IBM Quantum Lab.

Hands-on Exercise (try it at https://quantum-computing.ibm.com using IBM Quantum Lab)

Execute the following Qiskit program to perform a single time step of QD simulation. Here, we have used model parameters, $J=1, B=0.5$ and $\Delta t=0.01$, in atomic units.

```
##### Single step of Trotter propagation in transverse-field Ising model #####
import numpy as np
# Import standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, Aer, IBMQ
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
from qiskit.providers.aer import QasmSimulator
# Load your IBM Quantum account
provider = IBMQ.load_account()
### Physical parameters (atomic units) ###
J = 1.0 # Exchange coupling
B = 0.5 # Transverse magnetic field
dt = 0.01 # Time-discretization unit
### Build a circuit ###
circ = QuantumCircuit(2, 2) # 2 quantum & 2 classical registers
circ.rx(-2*dt*B, 0) # Transverse-field propagation of spin 0
circ.rx(-2*dt*B, 1) # Transverse-field propagation of spin 1
circ.cx(0, 1) # Exchange-coupling time propagation (1)
circ.rz(-2*dt*J, 1) #
circ.cx(0, 1) # (3)
circ.measure(range(2), range(2)) # Measure both spins
circ.draw('mpl')
```

This will build a circuit and draw it, which should then be transpiled and run on a simulator as follows.

```
### Simulate on OpenQASM backend ###
```

```
# Use Aer's Qasm simulator
from qiskit.providers.aer import QasmSimulator
backend = QasmSimulator()
# Transpile the quantum circuit to low-level QASM instructions
from qiskit import transpile
circ_compiled = transpile(circ, backend)
# Execute the circuit on the Qasm simulator, repeating 1024 times
job_sim = backend.run(circ_compiled, shots=1024)
# Grab the results from the job
result_sim = job_sim.result()
# Get the result
counts = result_sim.get_counts(circ_compiled)
# Plot histogram
from qiskit.visualization import plot_histogram
plot_histogram(counts)
```

Table I: Qiskit program for single-time-step QD simulation of TFIM: tfim-1 step.qiskit (https://aiichironakano.github.io/phys516/src/QComp/tfim-1step.qiskit).
After opening a Qiskit (ipykenel) notebook, you can copy and paste the above code into a cell in the Python notebook. Here, we have used QASM simulator as a backend. Actual quantum dynamics simulation [L. Bassman et al., Phys. Rev. B 101, 184305 ('20)] will iterate this unit-time stepping for many time steps. For Python programming underlying Qiskit, see A. Scopatz and K. D. Huff, Effective Computation in Physics (O'Reilly, '15).

For a 2×2 Hermitian matrix,
$\mathbf{A}=\left[\begin{array}{cc}a & b \\ b^{*} & a\end{array}\right]$,
where a and b are real and complex numbers, respectively, consider an eigenvalue problem,
$\left[\begin{array}{cc}a & b \\ b^{*} & a\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]=\varepsilon\left[\begin{array}{l}u \\ v\end{array}\right]$.
or equivalently
$\left[\begin{array}{cc}\varepsilon-a & -b \\ -b^{*} & \varepsilon-a\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
For nontrivial solutions (i.e., other than $u=v=0$), the determinant of the matrix in Eq. (A3) should be zero. (Otherwise, one can invert Eq. (A3) to get $u=v=0$.) Hence,
$\left|\begin{array}{cc}\varepsilon-a & -b \\ -b^{*} & \varepsilon-a\end{array}\right|=(\varepsilon-a)^{2}-|b|^{2}=0$, Secular (characteristic) equation
which has two solutions,
$\varepsilon_{ \pm}=a \pm|b|$. Eigenvalues
The corresponding eigenvectors can be obtained by solving Eq. (A3) for these eigenvalues
$\left[\begin{array}{cc}|b| & -b \\ -b^{*} & |b|\end{array}\right]\left[\begin{array}{l}u_{+} \\ v_{+}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] ;\left[\begin{array}{cc}-|b| & -b \\ -b^{*} & -|b|\end{array}\right]\left[\begin{array}{l}u_{-} \\ v_{-}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
with the answers (note the degeneracy of the two linear equations for each eigenvalue, e.g., $\left.|b| u_{+}-b v_{+}=0 \Longrightarrow\left(\times \frac{-b^{*}}{|b|}\right)-b^{*} u_{+}+|b| v_{+}=0\right)$
$\mathbf{w}_{ \pm}=\left[\begin{array}{l}u_{ \pm} \\ v_{ \pm}\end{array}\right]=\frac{1}{\sqrt{2}|b|}\left[\begin{array}{c}b \\ \pm|b|\end{array}\right]$. Eigenvectors
In Eq. (A7), we have normalized each eigenvector so that
$\mathbf{w}_{ \pm}^{\dagger} \mathbf{w}_{ \pm}=\left[\begin{array}{ll}u_{ \pm}^{*} & v_{ \pm}^{*}\end{array}\right]\left[\begin{array}{l}u_{ \pm} \\ v_{ \pm}\end{array}\right]=\frac{\frac{|b|^{2}}{\tilde{b}^{*} b}+|b|^{2}}{2|b|^{2}}=1$,
where $\mathbf{w}_{ \pm}^{\dagger}$ denotes the Hermitian conjugate (or conjugate transpose) of $\mathbf{w}_{ \pm}$. Also, the two eigenvectors are orthogonal:
$\mathbf{w}_{\mp}^{\dagger} \mathbf{w}_{ \pm}=\left[\begin{array}{ll}u_{\mp}^{*} & v_{\mp}^{*}\end{array}\right]\left[\begin{array}{l}u_{ \pm} \\ v_{ \pm}\end{array}\right]=\frac{\left|\frac{|b|^{2}}{\tilde{D}^{*} b}-|b|^{2}\right.}{2|b|^{2}}=0$.
Now, define a 2×2 matrix composed of column aligned eivenvectors,
$\mathbf{U}=\left[\begin{array}{ll}\mathbf{w}_{+} & \mathbf{w}_{-}\end{array}\right]=\left[\begin{array}{ll}u_{+} & u_{-} \\ v_{+} & v_{-}\end{array}\right]=\frac{1}{\sqrt{2}|b|}\left[\begin{array}{cc}b & b \\ |b| & -|b|\end{array}\right]$,
then
$\mathbf{U}^{\dagger} \mathbf{U}=\left[\begin{array}{c}\mathbf{w}_{+}^{\dagger} \\ \mathbf{w}_{-}^{\dagger}\end{array}\right]\left[\begin{array}{ll}\mathbf{w}_{+} & \mathbf{w}_{-}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathbf{I}$,
where \mathbf{I} is the 2×2 identity matrix and we have used the orthonormalization relations, Eqs. (A8) and (A9). Using the explicit formula for \mathbf{U} in Eq. (A10), we can also verify that $\mathbf{U} \mathbf{U}^{\dagger}=\mathbf{I}$ and hence \mathbf{U} is a unitary matrix:
$\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U} \mathbf{U}^{\dagger}=\mathbf{I}$. Unitary
The two solutions of Eq. (A2) can now be combined into a matrix form as
$\{\begin{array}{l}{\left[\begin{array}{cc}a & b \\ b^{*} & a\end{array}\right]\left[\begin{array}{l}u_{+} \\ v_{+}\end{array}\right]=\varepsilon_{+}\left[\begin{array}{l}u_{+} \\ v_{+}\end{array}\right]} \\ {\left[\begin{array}{ll}a & b \\ b^{*} & a\end{array}\right]\left[\begin{array}{l}u_{-} \\ v_{-}\end{array}\right]=\varepsilon_{-}\left[\begin{array}{ll}u_{-} \\ v_{-}\end{array}\right]}\end{array} \Leftrightarrow \underbrace{\left[\begin{array}{cc}a & b \\ b^{*} & a\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{ll}u_{+} & u_{-} \\ v_{+} & v_{-}\end{array}\right]}_{\mathrm{U}}=\underbrace{\left[\begin{array}{cc}u_{+} & u_{-} \\ v_{+} & v_{-}\end{array}\right]}_{\mathrm{U}} \underbrace{\left[\begin{array}{cc}\varepsilon_{+} & 0 \\ 0 & \varepsilon_{-}\end{array}\right]}_{\mathrm{D}}$,
i.e.,
$\mathbf{A U}=\mathbf{U D}$,
where we have defined a diagonal matrix,
$\mathbf{D}=\left[\begin{array}{cc}\varepsilon_{+} & 0 \\ 0 & \varepsilon_{-}\end{array}\right]$.
$\because\left[\begin{array}{ll}u_{+} & u_{-} \\ v_{+} & v_{-}\end{array}\right]\left[\begin{array}{c}\lambda_{+} \\ 0\end{array}\right]=\lambda_{+}\left[\begin{array}{l}u_{+} \\ v_{+}\end{array}\right]$and $\left[\begin{array}{ll}u_{+} & u_{-} \\ v_{+} & v_{-}\end{array}\right]\left[\begin{array}{c}0 \\ \lambda_{-}\end{array}\right]=\lambda_{-}\left[\begin{array}{l}u_{-} \\ v_{-}\end{array}\right] 1^{\text {st }} \& 2^{\text {nd }}$-column pickers
Multiplying both sides of Eq. (A14) by \mathbf{U}^{\dagger} from the right hand and using the unitary, Eq. (A12), we obtain
$\mathbf{A}=\mathbf{U D U}^{\dagger}$. Eigendecomposition
or more explicitly
$\left[\begin{array}{cc}a & b \\ b^{*} & a\end{array}\right]=\frac{1}{\sqrt{2}|b|}\left[\begin{array}{cc}b & b \\ |b| & -|b|\end{array}\right]\left[\begin{array}{cc}a+|b| & 0 \\ 0 & a-|b|\end{array}\right] \frac{1}{\sqrt{2}|b|}\left[\begin{array}{cc}b^{*} & |b| \\ b^{*} & -|b|\end{array}\right]$.
(Example) Pauli X matrix, i.e., $a=0$ and $b=1$
$\mathbf{X}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\mathbf{H Z H}$.
where \mathbf{H} and \mathbf{Z} are matrix representations of Hadamard and Pauli Z gates.

