CyberMAGICS Workshop: Reactive Molecular Dynamics

Ken-ichi Nomura

Collaboratory for Advanced Computing & Simulations University of Southern California

RMD hands-on: Nitish Baradwaj, Ruru Ma, Tian Sang, Pranab Sarker, Hind Aljaddani

Supported by National Science Foundation, Award OAC-2118061

CyberMAGICS Workshop, June 29, 2023

Hierarchy of Molecular Dynamics Methods

steps

Quantum Mechanics (QM)

Large-Scale Reactive MD Simulations

Shock-induced chemical reaction

Stress corrosion cracking

Underwater bubble collapse

Oxidation of nanoparticle

Dielectric polymers

2D material synthesis

Multi-scale Computational Modeling

• What is Molecular dynamics (MD) simulation?

Interatomic potential; force field

ReaxFF general energy terms*

$$E_{system} = E_{bond} + E_{over} + E_{val} + E_{tors} + E_{vdWaals} + E_{Coulomb}$$

Bonded interactions

Non-bonded interactions

 E_{bond} : Bond energy; two-body attractive term E_{over} : Over-coordination energy; penalty for overcoordinating atoms E_{val} : Angle strain energy; three-body term E_{tors} : Torsion energy; four-body term

E_{vdWaals}: van der Waals interactions E_{Coulomb}: Coulomb interactions

*van Duin, Adri CT, et al. The Journal of Physical Chemistry A 105 (2001): 9396-9409.

Key features of ReaxFF – 1*

A bond order is calculated and updated every step, thus allowing for chemical reactions during MD simulations.

*Russo, Michael F., and Adri CT van Duin. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **269** (2011): 1549-1554.

- Key features of ReaxFF 2*
 - All bonded-interactions are made of bond-order dependent.

$$E_{bond} = -D_e^{\sigma} \cdot BO_{ij}^{\sigma} \cdot f(BO_{ij}^{\sigma}) - D_e^{\pi} \cdot BO_{ij}^{\pi} - D_e^{\pi\pi} \cdot BO_{ij}^{\pi\pi}$$

*Russo, Michael F., and van Duin, Adri. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **269** (2011): 1549-1554.

Key features of ReaxFF – 3^{*}

- Non-bonded interactions (van der Waals and Coulomb) are calculated between every atom pair. (*i.e.*, no exception)
- ReaxFF employs the QEq method,** a geometry-dependent point charge calculations scheme, to update point charges for the entire system.

*.Russo, Michael F., and Adri CT van Duin. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 (2011): 1549-1554.
**Rappe, Anthony K., and William A. Goddard III. The Journal of Physical Chemistry 95 (1991): 3358-3363.

Key features of ReaxFF – 4**

Charge-equilibration (QEq)
 → Charge transfer

Determine atomic charges $\{q_i \mid i = 1, ..., N\}$ every MD step to minimize $E_{ES}(\mathbf{r}^N, q^N)$ with charge-neutrality constraint: $\Sigma_i q_i = 0$

O₂ dissociation on Al(111)

$$E_{\text{ES}}(\mathbf{r}^N, q^N) = \sum_i \left(\chi_i q_i + \frac{1}{2} J_i q_i^2 \right) + \sum_{i < j} \int d\mathbf{x} \int d\mathbf{x}' \frac{\rho_i(q_i; \mathbf{x} - \mathbf{r}_i) \rho_j(q_j; \mathbf{x}' - \mathbf{r}_j)}{|\mathbf{x} - \mathbf{x}'|}$$

ReaxFF flow diagram*

*Senftle, Thomas, et al. npj Computational Materials 2 (2016).

- How to get ReaxFF reactive force field parameters?
 - Do search Google Scholar: <u>https://scholar.google.com/</u>
 - Develop your ReaxFF force field parameters (non-trivial)

* van Duin, A. C. T.; Jan, M.; de Graaf, B. J. Chem. Soc., Faraday Trans. 1994, 90, (19), 2881-2895.

Reactive and Quantum MD Software

RXMD: Reactive molecular dynamics software for desktop to supercomputing platforms **QXMD:** Quantum dynamics software with non-adiabatic extensions

Sulfurdization of MoO₃ nanoflake

Electron transfer in light-harvesting molecule

Extended-Lagrangian Method

 Eliminated speed-limiting iteration for charge-equilibration (QEq) in ReaxFF by adapting an extended-Lagrangian scheme proposed for QMD

$$L_{\text{XRMD}} = L_{\text{RMD}} + \frac{\mu}{2} \Sigma_i \dot{\theta}_i^2 - \frac{\mu \omega^2}{2} \Sigma_i (\theta_i - q_i)^2$$
Physical charge

- Extended-Lagrangian RXMD achieves 8.6x speed up with the same energy conservation as fully converged QEq
- Parallel efficiency 0.977 on 786,432 Blue Gene/Q cores for 67.6 billion atoms

P. Souvatzis & A. Niklasson, *J. Chem. Phys.* **140**, 044117 ('14) Nomura *et al., Comput. Phys. Commun.* **192**, 91 ('15)

Polarizable Charge Equilibration (PQEq) Method

• PQEq method has been implemented in RXMD to study dielectric response as a function of time, electric field and temperature.

core-shell interaction between *i*- and *j*-atoms

Shift-Collapse (SC) Algorithm for Time-to-Solution

- SC algorithm generates optimal computation pattern for general finiterange *n*-tuple energy/force computations.
- SC-accelerated PQEq+SC achieves 5.0x speedup compare to the original PQEq.

M. Kunaseth, et al., Proceedings of Supercomputing SC13, 2013 K. Liu, et al. IEEE/ACM 9th Workshop ScalA 2018

RMD Simulations of MoS₂ Monolayer Synthesis

High-temperature sulfurdization of MoO₃ monolayer with S₂ gas

Step 1. O₂ evolution from a MoO₃ surface Step 2. SO/SO₂ formation from a MoO_{2.6} surface

Step 3. Mo-S bond formation on MoO_xS_y

MoS₂ Crystal Growth Simulation

2H Structure

Molybdenum

1T Structure

Sulfur

• Number of atoms:

4,305,600 atoms (1,497,600 O; 2,347,200 S and 460,800 Mo)

- System dimensions: 211.0 × 196.3 × 14.5 (nm³)
- **Timestep:** 0.75 fs.

The pre-sulfurized MoS slab is thermalized at 3000K for 1 nsec, quenched to 1000K, then subjected to temperature cycle to improve its crystallinity.

Grain Growth by Annealing

Zoom-in view

- Atoms in the sulfurdized slab are classified into 1T, 2H and disordered phases.
- Areas of connected 2H phase atoms indicates MoS₂ crystal grains, separated by 1T or disordered phases.

Grain Growth by Annealing

Color-coded by grain IDs

- Highly disordered structure is obtained by the rapid quenching at 2.2ns.
- Grain growth and crystallinity improvement at 6.4 ns due to the active grain boundary migration.

Grain Growth by Annealing

- Rapid decrease in the number of grains and increase in the size of grain during the 1st annealing.
- The largest grain continues to grow with a lower rate during the 2nd annealing step.

S. Hong, et al. JPCL 10, 2739-2744 (2019)

Moving Forward

Review: The ReaxFF reactive forcefield: development, applications and future directions*

https://www.nature.com/articles/npjcompumats 201511

List of published ReaxFF force fields

https://www.scm.com/doc/ReaxFF/Included_Fo rcefields.html

Interatomic potential repository

https://www.ctcms.nist.gov/potentials/

ReaxFF development tree*

Recent advances in RMD:

- eReaxFF: A Pseudoclassical Treatment of Explicit Electrons within Reactive Force Field Simulations <u>https://pubs.acs.org/doi/10.1021/acs.jctc.6b00432</u>
- JAX-ReaxFF: A Gradient Based Framework for Extremely Fast Optimization of Reactive Force Fields <u>https://chemrxiv.org/engage/chemrxiv/article-</u> <u>details/60e0d9496b8d89786e6b8a06</u>
- Machine learning potentials for extended systems: a perspective <u>https://link.springer.com/article/10.1140/epjb/s10051-021-00156-1</u>